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Expansions for the Capacitance of the
Bowman Squares

HENRY J. RIBLET, LIFE FELLOW, IEEE

Abstract —Expansions are given for the capacitance per unit length for
the geometry in which two infinite, square cylinders are placed concentric
with each other and rotated so that the edges of the inner square are
closest to the sides of the outer square.

I. INTRODUCTION

About 50 years ago, Bowman [1] determined the capacitance of
the geometry shown in Fig. 1 by means of a conformal transfor-
mation which maps the rectangle in the W plane of Fig. 1 onto
the quadrilateral, OABC, of the Z plane. For the case which he
considered explicity (pages 275 and 276) if p =1— b /d,
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These equations determine the capacitance, (), of the structure
explicitly in terms of p. The convergence of (3) is rapid for all
values of p between 0 and 1 since the real part of L/L’>1 in this
rangé. Care must be taken in the determination of the sign of
N /A from (3) to ensure consistency with [1, eq. (6)]. In short, the
real part of A’/A must be positive when k> k’, that is, when
p <y2 —1, and negative when k < k’. Equations (1)—(4) involve
computations with complex numbers, Otherwise the determina-
tion of the capacitance involves real quantities only. The values
of C, shown in the middle row of Table I were obtained from
this sequence of equations.

In this paper, two series for C,, one in terms of § =1—p and
the other in terms of p, are given which have certain theoretical
and practical advantages over the procedure outlined above. Not
only do the series give the limiting behavior of C; as p ap-
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Fig. 1.

Z and X coordinate planes.

proaches 0 or 1 but also the first eight terms in each series permit
the direct calculation of (, with sufficient accuracy for most
engineering applications without requiring any complex algebra.

Those interested in other examples in which the capacitance of
symmetrical, doubly connected regions is determined by confor-
mal mapping are referred to Laura and Luisoni [2].

First, consider the simpler case when 0 <k <1/V2. If @ is
defined by k = cos 0, this corresponds to 7#/4 <6 < m/2 and the
evaluation of Z, given by

. at ¢ a
Z=F(0){j(; (1_§2)(1_}\2§2) —'/O (1_§2)(1—}\’2§2)}
(8)

is obtained by integration in the left hand { plare of Fig. 2. Asin
{1, eq. (16)}, a and b are found from

14Z L odZ
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taken over the proper paths.

The expressions for @ and b are not the same as those given in
[1, egs. (16) and (17)]} because 1 /X is now in the upper half plane.
It is readily seen from (8) and (9) that

a=F(0)(L— L'+2iL’) (10)

ib=F(0)(—L- L") (11)
where L and L' are the complete elliptic integrals as defined in
[1].

Ifd=b—a,

d 1+i)(L-L
S =—= (___)g____) (12)
b L+L

This equation is readily solved for L/L’ in terms of 8 and it is
found that

L 1+4+x

L 1-x

(13)
if x=(1-)8/21

!This step 1s crucial in the procedure because our problem 1s now reduced to
considering only series with real coefficients.
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TABLE I
CAPACITANCE OF BOWMAN SQUARES
3 A .2 3 4 | .5 6 7 .8 .9 .95
C(8) | 2.4552| 3.3674 | 4.3032| 5.3630 | 6.6376! 8.2588 | 10.466! | 13.7973 | 19.9590 | 26.2882
Co | 2.4552 | 3.3674 4.3032: 5.3630 | 6.6376| 8.2588 | 10.4661 | 13.7973 | 19.9769 | 26.5639
Clp) | | | 7.2332| 8.3697 | 10.4786 | 137971 | 19.9769 [ 26.5639
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Fig. 2. Accurate { plane graphs.

Since (3) requires the expansion of ¢’ and its powers and g’ is
given by

q/=__ e—'rrL/L = e—we—2ﬂ'x/(l x) (14)

we are concerned with expansions having the form exp(yx/
(1 - x)). Of course
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(15)

which can be readily shown to be given by

eP/1-x) =1 4 Z { i yk(j 1)}x1. (16)
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Here the expression bounded by the round parentheses is the
number of combinations of j—1 things taken kK —1 at a time.
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Moreover
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after an interchange in the order of summation.
On the other hand,
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The expansion of the two series in ¢/, in terms of x, depends
on the convergence of the exponential series in the square brack-
ets. The value of k occurring in a given coefficient is limited by
the exponent, j, of the term in question. Thus, after some value
of I, depending on k, the exponential series in the square
brackets converge rapidly. Then since the sum in k is finite, the
values of the coefficients in (22) and (25) can be determined with
an accuracy limited only by the computer being used. Then,
carrying out the steps indicated in (3), (4), and (5), it was found
that the expansion for the modulus squared, k°, involves only?
powers of x* since k? is a real function of 8. Thus no computa-
tion with complex numbers is required.

Finally,

k*=5.7342728" — 15.3448748" +26.6967968'? —35.5958918"°
+39.859610820 —39.2714378% +35.0163886
—28.8227228%2 +22.1995788%¢ — 161645468
+11.2144108% —7.4583938 + - - . (26)

2The fact that the values of the coefficients of the other powers of x were
less than 10710 gives an ndication of the accuracy of the calculations.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 7, JULY 1983

Since, from the Appendix,
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substitution of (26) in (27) gives, in view of (7),
C, = 8n/[4log(1/8) +1.026128 - 0.1911428°

—0.0818788% —0.0523188"
—0.0370118% —0.02761082°
—0.02150882* —0.018969828 + - - - . (28)

As will be shown, this expansion gives accurate values of C, for
values of & as high as 0.8.
To obtain an expansion for small values of p, we return to
equation (1). Then
£=1+———2(1 l)x. (29)
L 1-x
g’ is now given, as before, by (14), (15), and (16) except that
y=—2m(l1—1i). Accordingly equations for ¢"*/*, 1+ ¢”> +1°+
g2+ -, and 1-2¢'+2¢* -2¢”° + - - - are identical to (19),
(22), and (25) except for an additional factor, 1~ i, inside of the
small parentheses which is raised to the k th power. For example,
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If we then put u(j, k)+iv(j, k)=
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. k
(i1 (1_1), we de-
k! k-1
termine /A’/A as the sum of a real series in x plus 7 times a
second real series in x without making any computations with
complex numbers except for determining powers of i—1. On
evaluation, it is found that the real component of k' is an even
series in x while the imaginary component is an odd series in x.
Consequently when x is replaced by ip a real series in p results.
Finally,

k'? = 91.7483500" — 366.993400p0° + 917.4835000°
—1834.9669990 + 717.095621p° — 26288.395363p°

+133711.5019300'° —460384.7424290'* + -+ (32)
and
8
G=— [ ~4log(p)—1.746461 +4p —2p”
+1.3333330° — 4.058278p* +13.0331130°
—31.2494500° +61.7369950] . (33)

Table I compares the exact value of the capacitance of the
Bowman squares with the values obtained from the two ap-
proximate expansions. The upper row gives the values obtained
from (28). It is seen that these values agree with the exact values
given in the middle row to six significant places for § as great as
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0.8. In fact, the error is less than 1 percent for § =0.95. On the
other hand, (33) is accurate for small values p. These expansions
also give the limiting behavior of the capacitance as & and p
approach zero.

APPENDIX
The expansion for C, in terms of & given in (28) requires more
terms in the expansion for K’/K in terms of & than are generally
known. For future possible interest, the first 12 terms in this
expansion are

K’ 16 1 13 23 2701 5057
W——:log(—‘)—‘—[k2+""k4+’_‘k6+ k8+ klO

K K 2 32 96 16384 40960
76715 146749
+ + 14
786432 1835008
144644749 279805685
+ 16 18
2147483643 4831838208
4346533901 8465644159

K2+ (3%

* 85899345920 * 188978561024

The method used to determine these coefficients is detailed in
Riblet [3, p. 665]. The identity [4, p. 73]

K(ky)  K(k)
K'(ko) “K'(k)

0T 14k

can also be used to find them as the solution of a set of linear
equations if an expansion for K'/K of the required form is
substituted in (35). In fact, it is the complete agreement between
the decimal values obtained from these independent procedures
which provides the author with the confidence to present these
computer-generated rational values.

(35)

when
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A Coplanar Probe to Microstrip Transition

DYLAN F. WILLIAMS, MEMBER, IEEE,
AND TOM H, MIERS, MEMBER, IEEE

Abstract —A transition between a coplanar probe and a microstrip
transmission line is reported. The transition is significant in that it does
not require substrate via holes. A set of microstrip impedance standards
were developed for the purpose of de-embedding the transition. The
transition is suitable for measuring the S parameters of a number of
low-cost monolithic microwave integrated circuits with coplanar probes.
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I. INTRODUCTION

The S parameters of planar microwave devices may be mea-
sured accurately and efficiently with coplanar probes [1]. Using
coplanar probes to measure the § parameters of monolithic
microwave integrated circuits (MMIC’s) based on microstrip
transmission lines is difficult, however, because the ground plane
of the microstrip transmission lines is not easily contacted by the
coplanar probe. Moniz [2] and Harvey [3] have used plated
substrate via holes for this purpose, but the difficult processing
required to form these via holes inevitably raises the circuit
fabrication cost and lowers the yield. For these reasons it is often
desirable to use a transition which coes not require substrate via
holes, especially if the circuit to be fabricated does not require via
hole grounding.

In this work a transition between a coplanar probe and a
microstrip transmission line which does not require substrate via
holes and which is suitable for performing S parameter measure-
ments of microstrip MMIC’s is described. The method unsed to
de-embed and unterminate the transition is discussed and the S

parameters of the transition deduced from this procedure are

presented. The accuracy of the de-embedded measurements is
estimated.

II. COPLANAR PROBE TO MICROSTRIP TRANSITION

The coplanar probe to microstrip transition investigated in this
work is shown in Fig, 1. The center signal pad on the coplanar
probe contacts the microstrip line into which the signal is
launched. The outer two ground pads on the coplanar probe
contact the microstrip radial stub near its center. The microstrip
radial stub provides a low impedance between the microstrip
ground plane and the coplanar probe ground contacts. (Other
stub types could be used but would exhibit a more narrow band
performance.)

If the fringing fields at the stub edges can be ignored, the
electrical reactance X between the probe ground and the micro-
strip ground can be estimated from the formulas given by Atwater

[4]:
X =(h/2ar) Zo(r,)(360/8) cos(9, — @,) /sin( @, - ®;) (1)
where

tan(8;) = Ny (kry) /Jo (kry)

tan(Q®,) = — Jy (kn)/M(kr)  (i=1.2)

Zy(n) = (120/ e, ) | T3 (kry) + N§ (kry)]
'[le(krl) + le(k"l)] e

k= 2’”\/€re/>\0

and @ is the angle subtended by the stub, ¢,, is the effective
dielectric constant (which may be approximated by the substrate
relative dielectric constant €, for large ), & is the substrate
thickness, A, is one free-space wavelength, J,(x) and N,(x) are
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